Flashcard (Front and Back)

Front (Question)
Analysis: general principle of convergence of sequence
Back (Answer)
Let an be a sequence of real or complex numbers. The sequence converges to something if and only if for any positive real number epsilon there exists an N such that whenever n > m > N we find that

| am - an | < epsilon


Memory Work Out Sessions use brain research to accelerate and improve memorization. Automatically scheduled daily review drills ensure sure you don't forget.





or Find more than 100,000 other things to learn

Educators and Trainers:

Tour YoYoBrain's resources for learning and teaching
Previous Card See the whole card set Next Card


Comments:

Other flashcards from Real Analysis
Analysis: Euler's number       Analysis: Newton-Raphson method of s...       Analysis: mathematical description of...       Analysis: general principle of conver...       Analysis: limits applied to infinite ...       Analysis: harmonic series       Analysis: limit of summation 1 / n ^...       Analysis: the comparison test for con...       Analysis: alternating series test for...       Analysis: define absolutely convergen...       Analysis: convergence of an absolutel...       Analysis: ratio test for infinite ser...       Analysis: define power series       Analysis: power series test for infin...       Analysis: radius of convergence of a ...       Analysis: when you can rearrange term...       Analysis: definition of limit for a r...       Analysis: define a continuous function       Analysis: A _____ of continuous funct...       Analysis: intermediate value theorem       Analysis: mean value theorem       Analysis: L'Hôpital's rule       Analysis: a function f(x) is said to...       Analysis: fundamental theorem of calc...       Analysis: how to express exponential ...       Analysis: Taylor theorem for power se...       Analysis: Taylor power series for spe...       Analysis: binomial theorem       Analysis: Riemann integration       Analysis: algebraic binomial       Analysis: what is the Fourier series ...       Analysis: Riemann surface       Analysis: If A and B are sets, then ...       Analysis: subset versus proper subset       Analysis:       Analysis: B \ A       Analysis: De Morgan's laws       Analysis: difference between ordered...       Analysis: ordered pair (x, y)       Analysis: A x B       Analysis: relation       Analysis: function       Analysis: image of function F       Analysis: let S be a relation. Then ...       Analysis: a function f is 1-1 iff       Analysis:       Analysis: if A and B are sets       Analysis: one may define an infinite...       Analysis: a set is countable iff       Analysis: a set is finite iff      





App_store_badge
What's new | About Us | Privacy Policy | Copyright Policy | Contact Us

Copyright 2007-2025 YoYoBrain.com

Managed By W3mg